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Abstract:

The paper presents advances in two new sensor technologies and a miniaturized associated electronics
technology which, when combined, can allow for very significant miniaturization and for the reduction of
weight and power consumption in x-ray and gamma-ray spectroscopy systems:

1. Mercuric iodide (HgI2) x-ray technology, which allows for the first time the construction of truly
portable, high-energy resolution, non-cryogenic x-ray fluorescence (XRF) elemental analyzer systems,
with parameters approaching those of laboratory quality cryogenic instruments.

2. The silicon avalanche photodiode (APD), which is a solid-state light sensitive device with internal

amplification, capable of uniquely replacing the vacuum photomultiplier tube in scintillation gamma-ray
spectrometer applications, and offering substantial improvements in size, ruggedness, low power
operation and energy resolution.

3. Miniaturized (hybridized) low noise, low power amplification and processing electronics, which take
full advantage of the favorable properties of these new sensors and allow for the design and fabrication of
advanced, highly miniaturized x-ray and gamma-ray spectroscopy systems.

The paper also presents experimental results and examples of spectrometric systems currently under
construction. The directions for future developments are di_ussed.

Mercuric iodide (Hgl 2) technology:
Mercuric iodide (HgI2) occurs in two main phases, tetragonal alpha-HgI 2 and orthorhombic beta-HgI 2.
The tetragonal alpha-HgI 2 is stable at room temperature and undergoes a reversible transition to the
orthorhombic phase at about 130°C. Alpha-HgI 2 single crystals usually are grown either by physical
vapor transport at temperatures in the range of 100-115°C [1], or in solution at 25°C by decomplexing of
dimethylsulfoxide-HgI 2 complexes [2]. Crystals grown from the vapor are characterized by better charge
transport properties [3]. Table 1 lists selected properties ofHgI 2 crystals. The current, most widely used
vapor-growth technique was introduced by Scholz [4], and subsequently modified by different laboratories

[1,5]. Another method, also used, is the growth of HgI2 platelet crystals by polymer-assisted vapor
transport [6,7]. The latter method yields relatively small sized single crystals.

Prior to detector fabrication, the as-grown crystals are sawed into slices, polished, and then etched in an

aqueous solution of KI. Electrodes are deposited onto both sides of a slice of single crystal HgI2. For x-
ray applications, usually Palladium of 100-200 A thickness is used as the electrode material. A guard-
ring structure is employed in order to reduce surface leakage current and improve the electric field
distribution in the active part of the detector. The unit is then mounted onto a ceramic substrate for
mechanical support. The surface of the detector is passivated and protected from the environment by a
very thin (1-3 _tm) plastic encapsulant. The Union Carbide Parylene process has been adopted for this

pur_se. Detectors are produced in different shapes and sizes, ranging from a few mm 2 up to several
cm z. Techniques have been developed to fabricate either single or multiple detectors on the same crystal
slice. In addition, more complex, multielement detectors have been designed in the form of submodules
that can be aggregated into large linear or two-dimensional arrays. A typical detector leakage current is
in the range of 0.08-0.5 pA/mm 2 at room temperature, depending on the specific crystal and applied bias
voltage. High-energy-resolution detectors are constructed to exhibit the lowest electronic noise and the
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best possible charge collection. Their capacitances are kept below 1 pF. A reduction of the electronic

noise level of a spectroscopy system, as well as an enhancement of the charge collection, can be achieved

by cooling the detector and the input Field Effect Transistor (FET), which can be accomplished using
miniature thermoelectric (Peltier) coolers. These small, single stage coolers are very compact (less than

0.3 cm 3) and use very little power (250 mW) to achieve an effective temperature in the range -10 to 0°C.

Properly fabricated detectors show very good long term stability and reliability of their performance under
various ambient conditions, including high vacuum and temperature cycling [8]. Also, HgI 2 detectors

exhibit excellent radiation damage resistance in comparison to other semiconductor detectors [9,10].

In summary, it has been found that HgI 2 possesses a number of properties that make it very attractive for

room temperature x-ray detectors that are capable of high energy resolution.

TABLEI

Property
Crystal Structure

Lattice Parameters

Density

Melting Point

Phase Transition Temperature
Dielectric Constant

Index of Refraction

Band Gap

Electrical Resistiv!ty

Electron Mobility

Hole Mobility

(p-x)e

([tx) h

Energy per e-h pair

Fano factor

Value

Tetragonal (low T, red)

Orthorhombic (hish T, yellow)
a = b = 4.361 A, c = 12.450 A

6.4 _cm 3
259oc

127oc

8.80-1.2i (at 5461 A)

2.71 (at 5890 A), 2.62 (at 6328 A)
2.13 eV

-1013 ohm-cm

~ 100 cm2/Vs at 300K

~ 4 cm2/Vs at 300K

__10-3 cm2/V

< 10 -5 cm2/V

4.2 eV (measured)
0.1

Avalanche photodiode (APD) technology:
The most common "reach-through" APD structure was introduced by R.J. Mclntire over two decades ago

[11], and devices based upon it have been produced since then in many commercial companies. This
structure allows one to achieve reliable and high performance devices with useful internal gain. These

devices have found many applications, including those in short wavelength communications. However,
due to their small active areas (limited to only a few square millimeters, at most), they never offered any

real competition to PMTs in a wide range of applications.

Recently, though, newer large area avalanche photodiodes have become available [12,13]. These newer

APDs are based upon a construction which utilizes a highly uniform, neutron-transmutation-doped

silicon, thus allowing for the formation of a large area, uniform junction. Breakdown at the junction

periphery is prevented, even with very high electric fields, by physically beveling the edges of the diode,

and by specially treating the edge [13]. This technology now offers APDs with diameters much larger
than 0.5 in., capable of operating at voltages in excess of 2 kV. APDs of 200 mm 2 area have typical

surface dark currents of 200 nA, and bulk dark currents of less than 0.5 nA. The large area APDs can

operate with gains up to 1,000. The parameter keff, which determines the noise performance at high gain

[ 11 ], is approximately 0.0015, compared to 0.0025 quoted for the best "reach-through" structures. The

typical quantum efficiency of current devices is 70-85% in the 550-1000 nm range of photon wavelengths,

falling to a few percent at 300 nm, although there is an extensive effort being pursued to improve the
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sensitivity of APDs at short wavelengths to extend their response into the UV region. Such APDs offer an

overall reduction in system size and complexity, compared with general purpose PMTs, as well as

improved ruggedness, reliability and longevity. Additional advantages include a linear response over a 7

decade range of signal intensities. The new photodetector draws less power than an equivalent PMT, and

operates from a single high voltage. Since it is immune to the effects of magnetic fields it requires no

shielding.

Miniaturized Amplification and Processing Electronics:

The development of miniaturized, low noise, low power amplification and processing electronics allows
one to take full advantage of the new sensors and to develop highly compact spectroscopy systems. HgI 2

systems benefit much more strongly by the use of hybridized electronics than do the bulky Si[Li] or Ge

cryogenically cooled systems, which require liquid nitrogen and high vacuum operation. We have
concentrated our efforts towards the development of high performance electronics for space applications

and synchrotron radiation applications.

a) Preamplifiers

A pulsed-light feedback preamplifier has been constructed using hybrid techniques in a standard 24-pin,

dual-in-line package (DIP). The preamplifier has been tested with Hgl 2 x-ray detectors, and the

electronic noise level of the system was measured at below 20 electrons rms [ 14] at 12 p.s shaping time;

power consumption was 220 mW. Recently, a new design was implemented which allows for the further

reduction of power consumption down to about 85 mW, without any deterioration in noise characteristics.

The circuit is prepared for hybridization in a 14 pin dual-in-line package (0.79" x 0.47") and will weigh

about 4 grams.

b) Amplifiers
A triangular shaping amplifier, including a wrap-around baseline restorer, computer controlled fine and

coarse gains, and computer selectable shaping times, has been developed and hybridized in a 50-pin DIP

package (1.5"x2.6"). The total power consumption of the amplifier is about 2.6 W. The amplifier can
work in conjunction with a recently developed pile-up rejector (PUR), which has also been hybridized in a

separate 2. l"x0.9" package. These circuits were tested with HgI 2 detectors for count rates of up to 75

kcps, and showed no practical differences with full sized commercial spectroscopy amplifiers at the

selected shaping times. The details of the design and testing procedures are given elsewhere [15].

For space applications, the amplification circuit can often be simplified by using only single settings for

the gain and shaping time. Also, pile-up rejection electronics can be eliminated for low count-rate

experiments. Our present effort in collaboration with the University of Chicago, for example, is
concentrated on such a design, which besides the amplification and shaping circuitry involves a baseline

restorer, a peak detector and a sample-and-hold circuit. The power consumption of this design is about

150 mW, and it can be hybridized in a 16-pin DIP (0.89"x0.47") package.

c) Processing electronics

A quad single-channel analyzer (q-SCA) that has four independent SCAs, each followed by 24 bit sealers,
has been developed and hybridized in a 1.5"x3.0" package. The circuit is built to be interfaced with a

computer that can be used to set the threshold levels of the SCAs and provide for the readout of scaler
contents. Total power dissipation is only 0.8 W. A more detailed description of the design is given

elsewhere [15].

For many applications, a miniaturized low power multichannel analyzer is much more desirable than a
series of SCAs. There is an active effort involving the University of Chicago and the Max Planck Institute

to construct such processing electronics, including the ADC and assorted memories, digital signal

processors and interfaces. By using a low power, successive-approximation 12 bit ADC (Analog Devices

AD7878), and by combining 3 channels (thus effectively reducing it to a 9 bit system), and finally by

incorporating Gatti corrections [16], it was possible to obtain differential nonlinearities below 1%.
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Experimental Results:
Figure 1 shows a characteristic x-ray spectrum for copper taken with an HgI 2 spectrometer operating as

an integral part of the Scanning Electron Microscope and Particle Analyzer (SEMPA) prototype
instrument. The characteristic x-rays were excited by electrons. The spectrum shows well-separated Cu-

K_x and Cu-KI3 lines at 8.0 and 8.9 keV, with an energy resolution of 218 eV (FWHM) (at the 8.0 keV

peak). Also shown are Cu-L lines (Lo_, LI3 at 928, 948 eV, respectively) exhibiting 190 eV (FWHM)

energy resolution. Figure 2 presents a Ni target fluorescence spectrum measured with the same

instrument used to obtain the data in Figure 1. In addition to the Ni-K a and -KI3 lines at 7.5 and 8.3

keV, the combined Ni-L lines are clearly visible at 849 eV with an energy resolution of 182 eV (FWHM).

The SEMPA instrument was developed for NASA's Mariner Mark II Comet Rendezvous/Asteroid Flyby

Mission to analyze cometary dust, and was designed to provide the simultaneous information of both an

SEM image and the elemental composition of dust grain specimens.

Figure 3 shows an x-ray spectrum of meteorite Murchison, taken with an HgI 2 spectrometer inserted into
the Alpha-X Backscattering Instrument. A 244Cm alpha source was used to excite fluorescent x-rays

from the sample. The Alpha-X Backscattering Instrument is under development in collaboration with the

University of Chicago and the Max Planck Institute to analyze the composition of the Martian surface on

the upcoming Mars'94 Mission.

Figure 4 presents a composite of x-ray spectra from different targets taken with an HgI 2 array. For

relatively low count-rate conditions (10 kcps) the following FWHM energy resolutions were obtained: 252

eV at 5.9 keV (Mn-Ko_), 380 eV at 17.44 keV (Mo-K_x), and 479 eV at 24.14 keV (In-Kc0. The spectra

shown here were measured using the Stanford Synchrotron Radiation Laboratory's (SSRL) intense SR

beams to excite elemental targets. HgI 2 detector arrays are being developed to enhance the benefits of

synchrotron radiation sources in several arcasof advanced biological and materials science research.
Recently, a two-dimensional array of twenty elements was fabricated, and construction of a 100-element

detector array system has also begun.

Figures 5-9 report results obtained with a large area Avalanche Photodiode (APD). An avalanche

photodiode was optically coupled to a CsI(T1) scintillator (1.27 mm x 1.27 mm). The diameter of the APD
was 15 mm. The APD/scintillator detector was tested by using different radiation sources. Figure 5 shows

the gamma ray spectrum taken using a 137Cs source. An energy resolution of 6.24% for the 137Cs (662

keV) gamma line was obtained. Figure 6 shows an energy resolution of 7.7% for a 51 ! keV line (22Na

source) and Figure 7 shows an energy resolution of 23.1% for an 80 keV line (133Ba source). The
APD/scintillator combination was also tested with a 122 keV line (57Co source) and the energy resolution

was 16.3% (cf. figure 8). Another APD was also measured with a BGO scintillator irradiated with a 22Na

source (511 keV and 1275 keV gamma rays). Figure 9 shows the spectrum taken at 0°C. The FWHM at

511 keV is 11.2%. The same BGO crystal was measured with a PM tube, and the FWHM at 511 keV was

11.6%. In Figure 9, the bismuth escape peak (511 keV - 76 keV) was well distinguished on the left

shoulder of the 511 keV peak, a feature which is not possible to observe with a PM tube.

Future Development:

The requirements for space instrumentation are in many aspects very similar to those for terrestrial field

applications. The reduced weight, power and size of the spectrometer can lead to extremely attractive

portable x-ray fluorescence instruments and gamma-ray spectrometers for environmental pollution
monitoring, geological exploration, marine mineral analysis, archeometry, and industrial material quality
assurance. One can foresee new generation, energy dispersive, detector-array gamma ........cameras-which are

able to efficiently reject Compton scatter, and thereby enhance medical or industrial images.

Our continuing effort is directed toward the improvement in HgI 2 crystal growth methods, the refinement

of detector fabrication techniques, and to the development of new designs of the associated electronics. In
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the area of APDs, we are putting an extensive effort into developing large scale, two dimensional detector

arrays. The development of miniaturized, low noise, low-power processing electronics allows one to take

full advantage of the favorable properties of these new sensors. Rapid progress in commercial operational

amplifiers, and in CMOS microcomputers and other hardware logic elements with lower power

consumption, reduced noise, and lower cost, strongly benefits the portable x-ray spectrometric
instrumentation field. For large scale detector arrays, these advances can be translated into a possibility

for constructing very powerful systems with affordable costs per electronics channel.
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Figure 1. X-ray fluorescence spectrum for copper.
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